NorthDBC Appéndix GTransport Outcomes Report

May 2023
Version 1.0

Document Status

Revision Status

Version	Date	Reason for Issue
0.1	20 Feb	Draft for Review
0.2	4 April	Draft for SME Review
1.0	2 May	Issue for IQA Review

Disclaimer

This is a draft document for review by specified persons at Auckland Transport and the New Zealand Transport Agency. This draft will subsequently be updated following consideration of the comments from the persons at Auckland Transport and the New Zealand Transport Agency. This document is therefore still in a draft form and is subject to change. The document should not be disclosed in response to requests under the Official Information Act 1982 or Local Government Official Information and Meetings Act 1987 without seeking legal advice.

Table of Contents

1 Introduction 1
1.1 Purpose and scope of the report 1
1.2 Report Structure 1
2 Recommended Network 2
2.1 Strategic Projects 3
2.2 Local Transport Corridors 3
3 Investment Objectives and KPl's for the North Recommended Network 5
3.1 Overall North Outcomes 8
3.1 Aotearoa's New Zealand's First Emissions Reduction Plan 14
3.2 Transport Emissions Reduction Pathway (TERP) 16
3.3 Strategic and Local Outcomes 19
3.4 Strategic Project Outcomes 20
3.4.1 Rapid Transit Corridor (RTC) Investment Objectives and Associated KPIs and Measures 20
3.4.2 State Highway 1 Upgrade (SH1) Investment Objectives and Associated KPIs and Measures 23
3.4.3 Silverdale Interchange Investment Objectives and Associated KPIs and Measures 25
3.4.4 SH1 Walking and Cycling Path Investment Objectives and Associated KPIs and Measures 28
3.4.5 RTC Walking and Cycling Path Investment Objectives and Associated KPIs and Measures 30
3.5 Local Project Outcomes 32
3.5.1 Wainui Investment Objectives and Associated KPIs and Measures 32
3.5.2 Dairy Flat Investment Objectives and Associated KPIs and Measures 37
3.5.3 Silverdale West/Pine Valley Investment Objectives and Associated KPIs and Measures 41
4 Transport Analysis 46
4.1 Land Use Scenarios 46
4.1.1 Land Use Assumptions 46
4.2 Transport Network Analysis 48
4.2.1 Transport Modelling 48
4.2.2 Roads and Streets Framework (RASF) 49
4.2.3 Corridor Form Assessment Framework 49
4.2.4 Type A Business Case Corridors/Segments 51
4.2.5 Intersection Form and Function 29

Appendices

Appendix 1. North Form \& Function
Appendix 2. Sidra Intersection Summary
Appendix 3. Rapid Transit corridor technical note

Acronyms

Acronym/Term	Description
ADT	Average Daily Traffic (number of vehicles per day)
ALT	Alliance Leadership Team
AMP	Alliance Management Plan
AMT	Alliance Management Team
AT	Auckland Transport
AUP	Auckland Unitary Plan
BFG Legal	Bell Gully Buddle Findlay JV
DBC	North Detailed Business Case
Do-min	Do-Minimum Option
FUZ	Future Urban Zone
FULSS	Future Urban Land Supply Strategy
GIS	Geographic Information System
IBC	North Indicative Business Case
IPAA	Interim Programme Alliance Agreement
KPI	Key Performance Indicator
LOS	Level of Service
MCA	Multi-Criteria Assessment
MSM	Macro Strategic Model
NOP	Non-Owner Participant (AECOM, Beca, Bell Gully, Buddle Findlay)
OP	Owner Participant
PAA	Programme Alliance Agreement
PAB	Programme Alliance Board
PCG	Project Control Group
PMO	Programme Management Office
PT	Public Transport
QoS 1	Quality of Service 1
RT	Rapid Transit

Acronym/Term	Description
RTC	Rapid Transit Corridor
RTN	Rapid Transit Network
SATURN	Meso-simulation modelling software package used for transport assessment - Simulation and Assignment of Traffic to Urban Road Network
Te Tupu Ngātahi	Supporting Growth Alliance
Waka Kotahi	Waka Kotahi New Zealand Transport Agency

1 Introduction

1.1 Purpose and scope of the report

This Transport Outcomes report has been prepared by Te Tupu Ngātahi for the North Detailed Business Case (North DBC). Te Tupu Ngātahi (the Supporting Growth Alliance) is a collaboration between Waka Kotahi NZ Transport Agency (Waka Kotahi) and Auckland Transport (AT) to carry out the planning phase of the Te Tupu Ngātahi Programme (the Programme) (formerly known as the Transport for Future Urban Growth (TfUG) Programme).

This Transport Outcomes report:

- Details the transport outcomes including Key Performance Indicators (KPIs) of the recommended network for the North.
- Provides an overview of the key transport assessments undertaken to support the optioneering process for the North recommended network including:
- Corridor Form and Function assessments,
- Intersection Form and Function assessments
- Provides a technical summary of key transport matters associated with the North recommended network.

As identified, the focus of this report is the transportation outcomes of the recommended package, with a more detailed description of the option development and assessment process provided within Appendix B of the North DBC in the Options Assessment Report.

1.2 Report Structure

The report has been split into several sections, covering the following:

Section 2 summarises the recommended network for the North corridors.
Section 3 summarises the investment objectives identified for the North corridors and the associated Key Performance Indicators (KPIs) set for each of these objectives. These KPIs subsequently measure how well the recommended network performs against the investment objectives.

Section 4 summarises the transport assessment undertaken to reach the recommended network.

There are several appendices to this report that provide further detail, specifically:

- Appendix 1: North Form \& Function - summary of the form and function assessments completed for the North corridors.
- Appendix 2: Intersection Performance Summary - summary of the Sidra performance results for the key intersections on the North network.

2 Recommended Network

The following section outlines the recommended network for the North DBC. The recommended transport network for the North DBC consists of a system of interventions including local corridors and strategic network components. These components include upgrades to existing rural corridors, new urban corridors, and new strategic connections including a rapid transit corridor and dedicated cycleways. Overall, it is considered that the North recommended network provides a safe, reliable transport system that supports growth, offers sustainable travel choice and access to employment and social amenities.

The recommended network is shown in Figure 2-1 below:
Figure 2-1: Recommended transport network

2.1 Strategic Projects

The key strategic projects included in the North recommended network are summarised below:

- A new Rapid Transit corridor between Albany and Milldale - To provide a strategic public transport corridor to serve the growth in the North between Albany and Silverdale, leading to an increase in public transport (PT) mode share and improved accessibility to social and economic opportunities in the North.
- Upgrades to SH1 between Albany and Silverdale with a new interchange at Wilks Road and upgraded interchange at Redvale - The interchanges provide access to/from the strategic road network to serve adjacent development areas. Widening to SH 1 will provide bus shoulder lanes from Albany to Silverdale in the short-medium term, with managed motorway capacity between Albany and Silverdale Interchange in the long term.
- Improvements to the existing Silverdale Interchange - Updated layout at the Silverdale Interchange.
- A new walking and cycling path along SH1 (SH1 Walking and Cycling Path) - To provide a high-quality strategic walking and cycling connection adjacent to SH 1 which will allow people to access social and economic opportunities in the various development areas in the North.
- A new walking and cycling path along the rapid transit corridor (RTC Walking and Cycling Path) - To provide a high-quality strategic walking and cycling connection adjacent to the proposed RTC in Dairy Flat and Silverdale which will allow people to access social and economic opportunities.

2.2 Local Transport Corridors

These North local transport corridors include a network of arterials that will support provision for frequent public transport, walking and cycling and general traffic. The specific corridors are detailed below.

- Upgrade to Wainui Road: A two-lane arterial road with dedicated walking and cycling facilities. Wainui Road forms an important east-west connection for all modes on the edge of the proposed Milldale town centre. Additionally, the corridor connects to SH 1 and the growth area of Millwater.
- Upgrade to Pine Valley Road: A two-lane arterial road with dedicated walking and cycling facilities. Pine Valley Road cuts through the centre of the Silverdale West growth area. The corridor forms an east-west connection for all modes between Kahikatea Flat Road and the new Argent Lane Connection that runs through Milldale. The corridor sits just west to the proposed Silverdale West Dairy Flat Industrial Area.
- Upgrade to Dairy Flat Highway between Dairy Flat and Albany: High quality, safe and direct active mode connection between Dairy Flat and Albany Village. The upgrade will also include safety improvements such as median barriers.
- Upgrade to Dairy Flat Highway between Silverdale Interchange and Dairy Flat: A four-lane arterial road with dedicated active mode and bus priority facilities. Dairy Flat Highway forms an important north-south connection on the North network. The corridor forms the boundary of the western portion of the FUZ and Silverdale West - Dairy Flat Industrial Area. Additionally, the connection provides a good level of resilience to the rest of the network, as it can be used as an alternative to SH 1 if needed.
- New connection between Dairy Flat Highway and Wilks Road (New Link Road): A new urban arterial with dedicated with dedicated active mode and bus priority facilities. The corridor provides an east-west connection through the centre of the Silverdale West - Dairy Flat Industrial Area.

Additionally, the corridor forms an important link between the Industrial Area and the strategic transport network (SH1).

- Upgrade to East Coast Road between Silverdale and Redvale Interchange: High quality safe and direct active mode connection between the growth areas of Silverdale and Redvale.
- Upgrade and extension to Bawden Road: A four-lane arterial road with dedicated active mode and bus priority facilities. Bawden Road provides an east-west connection between the strategic transport network and the Dairy Flat town centre.
- New Connection between Milldale and Grand Drive (Upper Orewa Extension): A new two-lane arterial road with dedicated walking and cycling facilities. The corridor provides a north-south connection for all modes between Wainui and the Grand Drive Interchange.
- Upgrade of Hibiscus Coast Highway and Grand Drive for public transport and active modes: Provides a strategic transport corridor for all modes through the growth areas of Silverdale, Red Beach and Orewa. The corridor provides a connection between two Town Centres and a variety of other important land uses including employment, Schools and RTN stations.
- A new SH1 crossing at Dairy Steam (Dairy Stream Motorway Crossing): Provides an all modes connection across SH1 between Top Road and East Coast Road. Connecting the FUZ on either side of SH1.
- New Argent Lane and new Pine Valley Road: Upgrade of an existing two-lane arterial to a fourlane arterial. It should be noted that the project will be provided in part by the developer of the Milldale development (in addition to the Milldale to Highgate bridge over the motorway).
- Upgrades to the Wainui Interchange for Active Modes: Provides a high-quality active mode connection across SH 1 . This will help improve the connectivity between communities on both sides of SH1.
- A new active mode connection along the Dairy Stream: Provides a high-quality strategic walking and cycling connection through the growth area of Dairy Flat between the SH1 corridor and a future centre in Dairy Flat and Green Park reserve.
- Silverdale to Highgate active mode connection: High-quality active mode connection between Millwater, Milldale and Silverdale Centre.

3 Investment Objectives and KPl's for the North Recommended Network

The following section provides a breakdown of the performance of the North Recommended Network against the Investment Objectives and subsequent KPIs.

The KPI measures compare a 'Do-minimum' transport network against the proposed Te Tupu Ngātahi projects in the recommended North DBC network, using a full build out 2048+ scenario. The DBC has followed the principles of the Te Tupu Ngātahi programme wide approach for the definition of the Do Minimum. ${ }^{1}$ The Do Minimum is defined as the least effort to maintain the existing system, including maintenance and operation of the existing system. The 2048+ land use scenario ${ }^{2}$ was agreed with Auckland Council to be the most appropriate scenario for route protection purposes. This is not a specified date but reflects the full build-out (post 2048) of the currently planned development, which then informs the long-term infrastructure needs.

The proposed North DBC projects and improvements have been identified in order to support growth in the North and unlock the future land use. In addition to these projects, there are several key strategic projects that integrate with this network including:

- Argent Lane Extension - Two lane arterial road which has been implemented in part
- Milldale / Highgate Bridge
- Penlink

It is the combination of these projects and the proposed Te Tupu Ngātahi projects that will enable the key transport and land use integration outcomes for the community.

The inclusion of the key inter-dependent strategicprojects in the Do-minimum network is to account for the fact that those projects are being developed by Waka Kotahi, so are not included as part of the Te Tupu Ngātahi improvements package.

For each of the projects in the North the following changes between the Do-minimum and recommended transport networks are noted in Table 3-1 below.

[^0]Table 3-1: Project differences between the Do-min and Recommended Network

Project	Do minimum	Recommended network
A new Rapid Transit corridor between Albany and Milldale	No RTC corridor. Buses use SH1 and existing HBC station.	RTC provided between Albany and Milldale.
Upgrades to SH1 between Albany and Silverdale with a new interchange at Wilks Road and upgraded interchange at Redvale	Penlink assumed in place, no capacity improvements or bus priority provided on SH1.	Improved capacity and bus priority provided on SH 1 , three lanes on SH1 between Albany and Silverdale
Improvements to the existing Silverdale Interchange	No improvements to the existing layout at the Silverdale Interchange. No walking and cycling facilities currently.	Walking and cycling facilities provided. Change from dual-lane roundabout form to gyratory interchange layout.
A new walking and cycling path along SH1 (SH1 Walking and Cycling Path)	Not included.	Provided within the Recommended Option.
A new walking and cycling path along the rapid transit corridor (RTC Walking and Cycling Path)	Not included.	Provided within the Recommended Option.
Upgrade to Wainui Road	Two-lane rural arterial, no walking and cycling facilities provided.	Two-lane urban arterial, walking and cycling facilities provided.
Upgrade to Pine Valley Road	Two-lane rural arterial, no walking and cycling facilities provided.	Two-lane urban arterial, walking and cycling facilities provided.
Upgrade to Dairy Flat Highway between Dairy Flat and Albany	Two-lane rural arterial, no walking and cycling facilities provided.	Two-lane rural arterial, walking and cycling facilities provided.
Upgrade to Dairy Flat Highway between Silverdale Interchange and Dairy Flat	Two-lane rural arterial, no walking and cycling facilities provided.	Four/Two-lane predominately urban arterial, walking and cycling facilities provided and bus priority lanes provided.
New connection between Dairy Flat Highway and Wilks Road (New Link Road)	Not Included.	Four/Two-lane urban arterial, walking and cycling facilities provided and bus priority lanes provided.
Upgrade to East Coast Road between Silverdale and Redvale Interchange	Two-lane rural arterial, no walking and cycling facilities provided.	Two-lane predominately urban arterial, walking and cycling facilities provided.

Project	Do minimum	Recommended network
Upgrade and extension to Bawden Road	Two-lane rural arterial, no walking and cycling facilities provided.	Four lane urban arterial, walking and cycling facilities with bus priority lanes provided.
New Connection between Milldale and Grand Drive (Upper Orewa Extension):	Not Included.	Two-lane urban arterial, walking and cycling facilities provided.
Upgrade of Hibiscus Coast Highway and Grand Drive for public transport and active modes:	Two-lane urban arterial, limited walking and cycling facilities.	Two-lane urban arterial, walking and cycling facilities with bus priority lanes provided.
A new SH1 crossing at Dairy Steam (Dairy Stream Motorway Crossing):	Not Included.	New connection for all modes provided across SH1.
New Argent Lane and new Pine Valley Road:	Two-lane urban arterial, walking and cycling facilities provided,	Four-lane urban arterial, walking and cycling facilities with bus priority lanes provided.
Upgrade to the Wainui Interchange for Active Modes:	Not Included.	Walking and cycling connection provided.
A new active mode connection along the Dairy Stream	Not Included.	Walking and cycling connection provided.
Silverdale to Highgate active mode connection	Not Included.	Wrovided.

3.1 Overall North Outcomes

As detailed above, the North Recommended Network has been developed within the context of a wider network, the following table reports on the overall outcomes of the entire system. The measures reported on are based on the complete network, with the complete build out of projected growth in North.

Key Performance Indicator	Measure	Outcome	Commentary
Investment Objective 1: Access			
Job Access	Proportion of population living within travel threshold (5,10,15 mins) of jobs by active modes	In the Recommended Option, the number of jobs that can be accessible within 5 mins by active modes are 28,810 jobs (compared to 22,531 in the Do-min Option). In the Recommended Option, the number of jobs that can be accessib20le within 10 mins by active modes are 38,761 jobs (compared to 35,558 in the Do-min Option). In the Recommended Option, the number of jobs that can be accessible within 15 mins by active modes are 51,370 jobs (compared to 46,605 in the Do-min Option).	The proportion of employment accessible by active modes increases in each of the time intervals âssessed. Within 5 mins the percentage (points) of employment increases by $\mathbf{2 8 \%}$, within 10 mins there is a $\mathbf{9 \%}$ increase and in 15 mins there is a 10% increase in the Recommended Option compared to the Do-min.
Job Access	Proportion of population living within travel threshold ($15,30,45 \mathrm{mins}$) of jobs by PT	In the Recommended Option, the number of jobs that can be accessible within 15 mins by PT are 34,808 jobs (compared to 28,764 in the Do-min Option). In the Recommended Option, the number of jobs that can be accessible within 30 mins by PT are 75,423 jobs (compared to 36,411 in the Do-min Option). In the Recommended Option, the number of jobs that can be accessible within 45 mins by PT are 304,024 jobs (compared to 71,081 in the Domin Option).	The proportion of employment accessible by PT increases in each of the time intervals assessed. Within 15 mins the percentage (points) of employment increases by $\mathbf{2 1 \%}$, within 30 mins and 45 mins there is more than a $\mathbf{1 0 0 \%}$ increase in the Recommended Option compared to the Do-min.

Investment Objective 2: Reliability			
Network Performance	\% of vehicle kilometres travelled in peak congestion ($>90 \% \mathrm{v} / \mathrm{c}$) in AM peak	22% of vehicle-km travelled in congested conditions in the Do-min scenario 13% of vehicle-km travelled in congested conditions in Recommended Option	There is a 9\% (percentage points) reduction of vehicle kilometres travelled in peak congestion ($>90 \% \mathrm{v} / \mathrm{c}$) in the AM peak in the Recommended Option.
Network Performance	Total VKT for the Te Tupu Ngatahi North Project area (Daily VKT)	$3,301,776$ total vehicle-km travelled in the Do-min Scenario $3,289,418$ total vehicle-km travelled in the Recommended Option	There is a 12,358 vehicle- km travelled reduction in the total VKT in the Recommended Option.
Susceptibility to Climate Change	Kilometres of infrastructure susceptible to Q100 flooding	46.8 km of the road network within the Northern growth area achieves Q100 Flood level immunity. This is the entire improved arterial network proposed by the Alliance. This helps support the overall sustainability and resilience goals of the North transport network.	Additionally, this KPI was measured on a per corridor basis (one-way along the corridor): - Bawden Road (3.3 km) - Dairy Flat Highway (14.3 km) - East Coast Road (5.7 km) - New connection between Dairy Flat Highway and Wilks Road (2.0 km) - Pine Valley Road (2.8 km) - Upper Orewa Extension (2.2 km) - Wainui Road (1.9 km) - Argent Lane (2.4 km) - Hibiscus-Coast Highway (9.8 km) - Dairy Stream Motorway Crossing (1.7 km) - Wilks Road (0.7 km)
Network Performance	Average PT journey time to Albany from the Northern growth area during the AM peak	Average of 66 mins - for PT (Do-min Option) Average of 36 mins - for PT (Recommended Option)	The average travel time reduces by $\mathbf{3 0} \mathbf{~ m i n s}$ in the Recommended Option. This is an 45\% reduction (percentage points).
Investment Objective 3: Integration			
Active Mode Access	\% of the North with access to highquality walking and	In the Recommended Option, 3,103 hectares (53%) of the North is within 400 m of a dedicated, separated	There is $\mathbf{4 9 \%}$ increase (percentage points) in the proportion of the Northern

	cycling facilities (within 400 m of a dedicated, separated active mode facility)	active mode facility. Compared to the Do-min Option which has 242 hectares (4\%).	growth area within 400 m of a high-quality, dedicated active mode facility in the Recommended Option.
RTN Access	\% of FUZ land within 800 m of the RTN corridor	In the Recommended Option, 1,402 hectares (52\%) of the FUZ land within the North is within 800 m of the RTN corridor.	N/A
Perceived Safety	\% / KMs of new and improved cycle network achieving required QoS (from AT Statement of Intent 2018-21)	74 km of new cycle network. This is more than the network of improved arterial network proposed by the Alliance.	Additionally, this KPI was measured on a per corridor basis (one-way along the corridor): Local Cycling Connections Bawden Road (3.3 km) Dairy Flat Highway (14.3 km) - East Coast Road (5.7 km) - New connection between Dairy Flat Highway and Wilks Road (2.0 km) - Pine Valley Road (2.8 km) - Upper Orewa Extension (2.2 km) - Wainui Road (1.9 km) - Argent Lane (2.4 km) - Hibiscus-Coast Highway (9.8 km) - Dairy Stream Motorway Crossing (1.7km) - Wilks Road (0.7 km) - Dairy stream active mode connection (3.0km) - Wainui Interchange active mode connection (0.2 km) Strategic Cycling Connections - RTN walking and cycling path (7.0 km) - SH1 walking and cycling path (17.0 km)
Amenity of the Street	KMs of new and improved transport network with enough space for	46.8 km of new urban street scape space. This is the entire improved	Additionally, this KPI was measured on a per corridor

	street furniture/lighting and tree planting appropriate to the known place function and built form	arterial network proposed by the Alliance.	basis (one-way along the corridor): - Bawden Road (3.3 km) - Dairy Flat Highway (14.3 km) - East Coast Road (5.7 km) - New connection between Dairy Flat Highway and Wilks Road (2.0 km) - Pine Valley Road (2.8 km) - Upper Orewa Extension (2.2 km) Wainui Road (1.9 km) Argent Lane (2.4 km) Hibiscus-Coast Highway (9.8 km) - Dairy Stream Motorway Crossing (1.7km) - Wilks Road (0.7 km)
Investment Objective 4: Travel Choice			
Mode Share	\% Active (cycling and walking) mode share for local trips within the North AM Peak - \% Active mode share	15\% - for active modes (Do-min Option) 20% - for active modes (Recommended Option)	There is a $\mathbf{5 \%}$ increase (percentage points) in active mode share in the Recommended option compared to the Do-min option.
Mode Share	\% PT mode share for trips leaving the North AM Peak-\%PT mode share	25\% - for PT (Do-min Option) 33\% - for PT (Recommended Option)	There is an 8% increase (percentage points) in PT share in the Recommended option compared to the Do-min option.
PT Attractiveness	KMs of Dedicated Bus Lanes	10.0 km of dedicated bus lanes. Dedicated bus lanes are provided on arterials with high-frequency bus routes to ensure minimal delays and improve the reliability of services.	Additionally, this KPI was measured on a per corridor basis (one-way along the corridor): - Bawden Road (3.3 km) - Dairy Flat Highway (5.6km) - New connection between Dairy Flat Highway and Wilks Road (1.1km)

Emissions	Absolute and per capita reduction in transport emissions as a result of the project as measured by the VEPM model	$\mathrm{CO}_{2}-\mathrm{eq}, \mathrm{t}$			According to the VEPM model, there is a $\mathbf{1 4 , 5 0 0}$ tonne yearly reduction in CO_{2} eq emissions for the North Recommended transport network in 2048+.	
Mode Shift	Mode shift from single occupancy private vehicle AM Peak - \%Car mode share	78\% - Do-min scenario 71\% in Recommended Option			There is a 7\% mode shift (percentage points) from single occupancy private vehicles in the Recommended Option. While the number of previous active mode DSIs are relatively low. The conflict risk for these users will increase in the future as there are more vehicles and active mode users on the network. This risk can be significantly reduced by providing dedicated facilities separated from traffic.	
Investment Objective 5:Safety						
DSI	No. of active mode incidents resulting in serious injury and deaths	2 active mode DSIs in the last 5 year period (2018-2022). However, with the expected growth in the area exposure to risks for active mode users is expected to increase. To accommodate for this increased safety risk, safe and connected walking and cycling facilities will be provided on the majority of corridors in the North.				
DSI	DSI Savings in 2048+	Based on the total VKT travelled in the recommended network there is a total of 10 DSI's saved per year in 2048+			N/A	
Perceived Safety	\% / KMs of new and improved cycle network achieving required QoS (from AT Statement of Intent 2018-21)	74 km of new cycle network. This is more than the network of improved arterials proposed by the Alliance.			Additionally, this KPI was measured on a per corridor basis (one-way along the corridor): Local Cycling Connections - Bawden Road (3.3 km) - Dairy Flat Highway (14.3 km) - East Coast Road (5.7 km) - New connection between Dairy Flat Highway and Wilks Road (2.0 km) - Pine Valley Road (2.8 km) - Upper Orewa Extension (2.2 km) - Wainui Road (1.9 km)	

			- \quad Argent Lane (2.4 km) - Hibiscus-Coast Highway (9.8km) - Dairy Stream Motorway Crossing (1.7km) - Wilks Road (0.7 km) - Dairy stream active mode connection (3.0km) - Wainui Interchange active mode connection (0.2km) Strategic Cycling Connections - RTN walking and cycling path (7.0 km) SH1 walking and cycling path (17.0 km)

3.1 Aotearoa's New Zealand's First Emissions Reduction Plan

In addition to the above metrics, one of the key priorities of the current government is to reduce emissions over the next 15 years. This will help achieve the initial commitment of getting to net-zero emissions by 2050. This is outlined in New Zealand's very first emissions reduction plan.

Transport is one of the largest sources of greenhouse gas emissions. It is responsible for approximately 17% of gross domestic emissions and 39% of total domestic carbon dioxide emissions. The emissions reduction plan suggests three focus areas for reducing transport emissions, these include:

- Reducing reliance on cars and support people to walk, cycle and use public transport
- Rapidly adopt low-emission vehicles
- Beginning work to decarbonise heavy transport and freight

The outcomes sought by the Alliance and the North recommended network directly impact the first focus area. This is achieved by improving urban form, travel choice and accessibility to better transport options which all play a role in reducing VKT emissions. Within this focus area there are three key action areas outlined in the emissions reduction plan. These include:

- Action 10.1.1 - Integrate land-use planning, urban development and transport planning and investments to reduce transport emissions.
- Action 10.1.2 - Support people to walk, cycle and use public transport
- Action 10.1.4 - Require roadway expansion and investment in new highways to be consistent with transport targets

Accordingly, the aspects of the recommended network that achieve these individual actions are outlined in Table 3-2 below.

Table 3-2: Alignment between the Recommended Network and Emissions Reduction Plan

Emissions Reduction Plan Focus Area	Aspects of the Recommended Network that achieve the Focus Area
Action 10.1.1	There is $\mathbf{4 9}$ in increase in the proportion of the Northern growth area within 400m of a high-quality, dedicated active mode facility in the Recommended Option. This will include upgrading existing corridors on the network with high-quality walking and cycling facilities and the development of new corridors on the network enabling the provision of active mode facilities within new growth areas.
Action 10.1.2	74km of new and improved cycling facilities. Development of a RTC corridor within the Northern growth area. The RTC corridor will also include the development of RTN stations throughout the North, the locations of these stations will be adjacent to proposed local centres, high density residential activity and potential new school sites. This co-location is intended to enable a good walk-up catchment, increasing uptake of public transport.

Emissions Reduction Plan Focus Area	Aspects of the Recommended Network that achieve the Focus Area
	- Within 15 mins, the proportion of employment accessible by PT increases by $\mathbf{2 1 \%}$, and within $30 / 45$ mins there is more than a 100% increase in the Recommended Option compared to the Do-min Option. Accordingly, PT becomes a viable option for people travelling to work in the Recommended Option. - Within 5 mins the proportion of employment increases by $\mathbf{2 8 \%}$, within 10 mins there is a $\mathbf{9 \%}$ increase and in 15 mins there is a $\mathbf{1 0 \%}$ increase in the Recommended Option compared to the Do-min. These increases can be attributed to the improvements outlined in Action 10.1.1 for active modes as part of the recommended transport network. Accordingly, the use of active modes becomes a viable option for residents commuting to local jobs in the Recommended Option. - The provision of dedicated active mode facilities on both new and existing corridors results in a 5% increase in active modes trips in the Recommended Option compared to the Do-min option for location trips within the North. - The increased service frequency and improved accessibility to highfrequency PT results in an 8% increase in PT trips in the Recommended Option compared to the Do-min option for trips outside of the North.
Action 10.1.4	- Upgrade to SH1 between Albany and Silverdale with a new interchange at Wilks Road and an upgraded interchange at Redvale. - The improvements to SH1 reduces the average travel time from Silverdale to Albany by 14 mins in the AM peak for private vehicles and HOV. In addition, there is a 12% reduction of vehicle kilometres travelled in peak congestion ($>90 \% \mathrm{v} / \mathrm{c}$) in the AM peak in the Recommended Option. The location of the Wilks Road Interchange allows the efficient and reliable movement of freight between the Silverdale West - Dairy Flat Industrial area and other key areas to the South (i.e. Albany). This supports the growth of these industrial areas diverts freight traffic away from the local network and onto strategic corridors and links.

3.2 Transport Emissions Reduction Pathway (TERP)

In 2020, Auckland Council adopted Te Tāruke-ā-Tāwhiri: Auckland's Climate Plan, with clear emissions reduction targets,

- Halve emissions by 2030 and
- Reach net zero emissions by 2050.

It stated that Auckland's transport sector emissions must reduce by 64% on 2016 levels by 2030 to reach this target. The plan identifies areas for change such as changing travel behaviour and encouraging shifting to more sustainable modes of transport such as walking, cycling and public transport.

The Transport Emissions Reduction Pathway (TERP) provides the pathway to achieving this 64\% reduction. The pathway indicates that this reduction can be achieved by transforming Auckland's transport system through 11 key areas. These 11 areas are grouped into the same three focus areas outlined in the ERP. While the specific targets outlined in each of the documents differ, the direction of the two documents and the specific actions included in both, are very well aligned. Crucially, both documents recognise mode shift as a primary contributor to emissions reduction in the near-term.

The aspects of the recommended network that achieve these areas of transformation is illustrated in Table 3-3 below.

Table 3-3: Alignment between the Recommended Network and the Transport Emissions Reduction Pathway

Transformational Area

Reduce reliance on cars and support people to walk, cycle, and use public transport	Supercharge Walking and Cycling		74 km of new and improve walking and cycling facilities. There is 49% increase in the proportion of the Northern growth area within 400 m of a highquality, dedicated active mode facility in the Recommended Option.
	Massively increase public transport patronage		Increase in public transport mode share from 25% to 33% for trips outside of the North, $1,402 \mathrm{Ha}$ of FUZ land within a walk-up catchment of the RTC corridor
	Prioritise and resource sustainable transport		No additional vehicle capacity on existing roads

Transformational Area

	Efficient freight and services	Long term provision of the Wilks Road Interchange to support freight access to the Silverdale West Structure plan area.
Empower Aucklanders to make sustainable transport choices	Empower Aucklanders to make sustainable transport choices	- The proportion of employment accessible by active modes increases in each of the time intervals assessed. Within 5 mins the proportion of employment increases by 28%, within 10 mins there is a 9% increase and in 15 mins there is a 10% increase in the Recommended Option compared to the Do-min. - The proportion of employment accessible by PT increases in each of the time intervals assessed. Within 15 mins the proportion of employment increases by 21%, within 30 mins and 45 mins there is more than a 100\% increase in the Recommended Option compared to the Do-min.

3.3 Strategic and Local Outcomes

The outcomes of the North strategic projects have been reported separately for each of the individual projects being implemented as part of the North DBC. Whereas the remaining arterial and active mode projects have been grouped together for each of the distinct areas in the North. These areas include Wainui, Silverdale West/Pine Valley and Dairy Flat and are illustrated in Figure 3-1 below. The subsequent outcomes represent the changes to each of these areas as a result of the full recommended network being implemented in the North.

Figure 3-1: Local Packages

3.4 Strategic Project Outcomes

3.4.1 Rapid Transit Corridor (RTC) Investment Objectives and Associated KPIs and Measures

The following table provides a summary of the transport outcomes related to the new rapid transit corridor between Albany and Milldale.

Key Performance Indicator	Measure	Outcome	Commentary
Investment Objective 1: Access			
Job Access	Proportion of population living within travel threshold ($15,30,45 \mathrm{mins}$) of jobs by PT	The RTC corridor will serve each of the growth areas in the North. Accordingly, this measure was based on the entire Northern growth area which includes Wainui, Silverdale/ Pine Valley and Dairy Flat In the Recommended Option, the number of jobs that can be accessible within 15 mins by PT are 34,808 jobs (comparred to 28,764 in the Do-min Option). In the Recommended Option, the number of jobs that can be accessible within 30 mins by PT are 75,423 jobs (compared to 36,411 in the Do-min Option). In the Recommended Option, the number of jobs that can be accessible within 45 mins by PT are 304,024 jobs (compared to 71,081 in the Do-min Option).	The proportion of employment accessible by PT increases in each of the time intervals assessed. Within 15 mins the percentage (points) of employment increases by 21%, within 30 mins and 45 mins there is more than a 100\% increase in the Recommended Option compared to the Do-min.
Investment Objective 2: Reliability			
PT service reliability	Proportion of RTN route that is separated from conflict with vehicles	Route protection of the RTN corridor will extend from Albany and continue through to Milldale. The alignment of the RTN is such that it runs along a separated, dedicated facility which is decoupled from any road carriageway. Accordingly, there are minimal conflict points. At these intersections the RTC runs on a dedicated phase to avoid conflict with pedestrian and vehicle movements. The general assessment to date has been completed under a mode neutral scenario. Once a mode is finalised at implementation, further consideration for integration/segregation will be required.	N/A
Availability of alternatives to	Every strategic network connection has an appropriate	The current network is dominated by vehicle travel with only two north-south routes heading south. The RTC will provide a step-	N/A

strategic connection	alternative to key destinations	change in people-movement capacity through fast, frequent, high-capacity public transport services. It allows access between Albany and the Northern growth areas and subsequently onwards to the City Centre. The State Highway network and SH1 walking and cycling path provides a suitable alternative within the North and outside in the event of a failure.	
Susceptibility to climate change	Kilometres of RTN infrastructure susceptible to flooding	The full alignment (16.8 km) of the RTC corridor will consist of multiple stream and road over bridges achieving a Q100 Flood level immunity. This highlights the resilience of the RTC alignment which helps support the overall sustainability and resilience goals of the North transport network.	N/A
Investment Objective 3: Integration			
Transport integration	Amount of residential growth with access to public transport services	There is approximately 3,109 hectares of FUZ within the North. To unlock the significant urban development occurring within the Northern growth areas, providing fast, frequent and reliable public transport services is a key step in connecting the area to the wider network as well as easing congestion. The Recommended Option includês the RTN travelling through Dairy Flat, Silverdale West/Pine Valley and Milldale which subsequently unlocks this growth and provides residents with a practical transport alternative. A future RTC station in Dairy Flat will integrate with a future town/metro centre. A mix of land use will be provided within a direct walk up catchment enhancing outcomes for the RTC and centre alike. The alignment is such that there will be a network of connector services that feed into the RTN. In comparison, the RTN only travels to Albany in the Do-min Option. Which leaves the North without access to the RTN and leaves a gap in the amount of FUZ that can be unlocked.	N/A
Investment Objective 4: Travel Choice			

3.4.2 State Highway 1 Upgrade (SH1) Investment Objectives and Associated KPls and Measures

The following table provides a summary of the transport outcomes related to the upgrades to SH 1 between Albany and Silverdale with a new interchange at Wilks Road and upgraded interchange at Redvale.

Key Performance Indicator	Measure			ome	Commentary
Investment Objective 1: Access					
Job access	Employment accessible within 15 and 30 mins by private vehicles within the Northern growth area	In the Recommended Option, the number of jobs that can be accessible within 15 mins by private vehicles are 63,688 jobs (compared to 50,158 in the Do-min Option). In the Recommended Option, the number of jobs that can be accessible within 30 mins by private vehicles are 178,670 jobs (compared to 175,078 in the Do-min Option).			The proportion of employment accessible by private vehicles increases in each of the time intervals assessed. Within 15 mins there is a 27% (percentage points) increase and within 30 mins there is a 2\% (percentage points) increase.
Travel time	Travel time from Silverdale to Albany via SH1 during the AM peak.				In the AM peak the travel time reduces by 14 mins. This is a 45% reduction (percentage points) in travel time.
		Period	Domin (min)	Recommended Option (min)	
		AM	31	17	
Investment Objective 2: Reliability					
Network performance	\% of vehicle kilometres travelled in peak congestion (>90\% v/c) in AM peak	47\% of vehicle-km travelled in congested conditions in the Do-min scenario 34% of vehicle-km travelled in congested conditions in the Recommended Option			There is a 13% reduction of vehicle kilometres travelled in peak congestion ($>90 \% \mathrm{v} / \mathrm{c}$) in the AM peak in the Recommended Option.

Investment Objective 3: Integration

		The Silverdale West - Dairy Flat Industrial area is sequenced to be development ready in the period 2018 - 2022. Therefore, providing sufficient motorway and interchange connections is critical to the timely development of the Industrial area. Additionally, the Wilks and Redvale interchanges are important east-west links for those traveling from the growth areas on the Integration with wider future transport network	Connectivity/Integration side of SH1 (i.e. Silverdale and with both the transport network and adjacent development		
Redvale) to the Dairy Flat Town Centre and Industrial area on the western side of SH1. Without adequate motorway capacity and interchange connections, the Silverdale West					
- Dairy Flat Industrial area will be isolated					
strategic motorway network. The limited					
accessibility particularly for heavy vehicles					
may compromise the viability of the area in					
the long term.				\quad	N
:---					

Investment Objective 4:Travel Choice

Emissions	Absolute and per capita reduction in transport emissions as a result of the project as measured by the VEPM model				According to the VEPM model, there is a $\mathbf{1 , 5 0 0}$ tonne yearly increase in CO_{2} eq emissions for the North Recommended transport network in 2048+.
Mode Shift	Mode shift from single occupancy private vehicle AM Peak - \%Car mode share	78\% - Do-I $71 \% \text { in } \operatorname{Re}$	scenario mmended		There is 7\% mode shift (percentage points) from single occupancy private vehicles in the Recommended Option.
Investment Objective 5:Safety					

3.4.3 Silverdale Interchange Investment Objectives and Associated KPIs and Measures

The following table provides a summary of the transport outcomes related to the improvements to the existing Silverdale Interchange.

Key Performance Indicator	Measure	Outcome	Commentary
Investment Objective 1: Access			
Volume movement	Strategic people movement through the Interchange	For the Do-min Option, the interchange takes the form of a dual-lane roundabout which changes to a 'gyratory' form in the Recommended Option. There are no active mode facilities recommended as part of the Domin Option, which aligns with the existing layout at the interchange. A 'gyratory' configuration removes the potential for re-circulating (uturning) vehicles that can be associated with roundabouts. This improves the overall efficiency and safety of the interchange. In addition, the interchange form in the Recommended Option includes the grade separation of active modes. Accordingly, this layout outweighs the Do-min Option with regards to active mode treatments. Advantages include: - Grade separation of active modes is generally preferred, as it provides the safest option for active modes, by removing conflict with vehicles and enabling uninterrupted journeys. - Removing active modes from intersections enhances the safety and efficiency for all users travelling through the interchange, by removing signal crossing time.	

Investment Objective 2: Reliability

$\left.\begin{array}{|l|l|l|l|}\hline & \text { Average LOS (AM peak) } & \begin{array}{l}\text { 0.729 degree of saturation - } \\ \text { Recommended Option } \\ 0.846 \text { degree of saturation } \\ \text { Do-min Option }\end{array} & \begin{array}{l}\text { The congestion during } \\ \text { the AM peak period is } \\ \text { worse in the Do-min } \\ \text { Option compared to the } \\ \text { Recommended Option. } \\ \text { This level of congestion } \\ \text { will have a significant } \\ \text { adverse effect on the }\end{array} \\ \text { reliability of travel times } \\ \text { for all modes through } \\ \text { the Interchange. In } \\ \text { particular, impacting } \\ \text { the movement of freight } \\ \text { into the Silverdale West } \\ \text { Industrial area. }\end{array}\right\}$

| | | connections and strategic facilities
 such as the SH1 walking and
 cycling path This allows both non-
 local and local trips to occur
 through the interchange to and
 from each of the Northern growth
 areas. |
| :--- | :--- | :--- | :--- |
| Investment Objective 5:Safety | No. of incidents resulting
 in serious injury and
 deaths | 0 DSIs in the last 5-year period
 (2018-2022). This is to be thent
 expected given that the current
 interchange is a roundabout which
 is the Recommended intersection
 form for a 'Safe System' which
 minimises the risk of deaths and
 serious injuries at the intersection
 With the expected growth in the
 North there is a subsequent
 increase in traffic volumes through
 the interchange. This increases
 the risk for users travelling
 through the interchange as it
 increases the exposure to an
 incident. To accommodate for this
 increased safety risk, the
 interchange separates the SH1
 walking and cycling path from
 vehicle conflict at and through the
 interchange. This particularly
 benefits vulnerable road users
 traveling through the interchange. |

3.4.4 SH1 Walking and Cycling Path Investment Objectives and Associated KPIs and Measures

The following table provides a summary of the transport outcomes related to a new walking and cycling path along SH1.

Key Performance Indicator	Measure	Outcome	Commentary
Investment Objective 1: Access			
Job access	Employment within 2km of the SH1 Walking and Cycling Path	In the Recommended Option, the SH1 walking and cycling path allows access to approximately 20,785 jobs.	There is an additional 20,785 jobs accessible within 2 km of the SH1 walking and cycling path in the Recommended Option compared to the Do-min Option.
Investment Objective 2: Reliability			
Investment Objective 3: Integration			
Active Mode access	\% of residential growth with access to high quality active mode facility	In the Recommended Option, the SH1 walking and cycling path allows access to approximately 363 hectares of FUZ land use compared to 0 hectares in the Domin Option.	There is an additional 363 hectares of FUZ within 400 m of the SH1 walking and cycling path in the Recommended Option compared to the Do-min Option. This is approximately $\mathbf{1 2 \%}$ of the total FUZ within the North.
Investment Objective 4:Travel Choice			
Mode Share	Number of people using the SH1 walking and cycling path	It is predicted that there will be 410 trips a day on the SH 1 walking and cycling path. The path is a fully separated, high-quality, highspeed facility that allows users the ability to travel away from vehicles and other safety hazards otherwise present on a typical road carriageway.	N/A
Investment Objective 5:Safety			
DSI	No. of incidents resulting in serious injury and deaths	The SH 1 path will be a separated, dedicated walking and cycling facility with no conflict points with	N/A

		vehicles. Accordingly, no DSIs involving vehicles are anticipated.	
Perceived safety	\% / KMs of new and improved cycle network achieving required QoS (from AT Sol 2018-21)	17.0 km	Measured one-way over the corridor length

3.4.5 RTC Walking and Cycling Path Investment Objectives and Associated KPIs and Measures

The following table provides a summary of the transport outcomes related to a new walking and cycling path along the rapid transit corridor.

Key Performance Indicator	Measure	Outcome	Commentary
Investment Objective 1: Access			
Job access	Employment within 2km of the RTC Walking and Cycling Path	In the Recommended Option, the RTC walking and cycling path allows access to approximately 1,920 jobs.	There is an additional 1,920 jobs accessible within 2 km of the RTC walking and cycling path in the Recommended Option compared to the Do-min Option.
Investment Objective 2: Reliability			
Investment Objective 3: Integration			
Active Mode access	\% of residential growth with access to high quality active mode facility	In the Recommended Option, the RTC walking and cycling path allows access to approximately 577 hectâres of FUZ land use compared to 0 hectares in the Domin Option.	There is an additional 577 hectares of FUZ within 400 m of the RTC walking and cycling path in the Recommended Option compared to the Do-min Option. This is approximately 18% of the total FUZ within the North.
Investment Objective 4:Travel Choice			
Mode Share	Number of people using the RTN walking and cycling path	It is predicted that there will be 978 trips a day on the RTC walking and cycling path. The RTC path is a fully separated, high-quality, high-speed facility that allows users the ability to travel away from vehicles and other safety hazards otherwise present on a typical road carriageway.	N/A
Investment Objective 5:Safety			
DSI	No. of incidents resulting in serious injury and deaths	The RTC path will be a separated, dedicated walking and cycling facility with no conflict points with	N/A

		vehicles. Accordingly, no DSIs involving vehicles are anticipated.	
Perceived safety	\% / KMs of new and improved cycle network achieving required QoS (from AT Sol 2018-21)	7.5 km	Measured one-way over the corridor length

3.5 Local Project Outcomes

3.5.1 Wainui Investment Objectives and Associated KPIs and Measures

The following table provides a summary of the transport outcomes related to the Northern growth area of Wainui.

Key Performance Indicator	Measure	Outcome	Commentary
Investment Objective 1: Access			
Job Access	Proportion of population living within travel threshold ($5,10,15 \mathrm{mins}$) of jobs by active modes	In the Recommended Option, the number of jobs that can be accessible within 5 mins by active modes are 7,430 jobs (compared to 7,430 in the Do-min Option). In the Recommended Option, the number of jobs that can be accessible within 10 mins by active modes are 21,839 jobs (compared to 14,765 in the Domin Option). In the Recommended Option, the number of jobs that can be accessible within 15 mins by active modes are 27,318 jobs (compared to 22,413 in the Domin Option).	The proportion of employment accessible by active modes increases in each of the time intervals assessed. Within 5 mins the percentage (points) of employment increases by 0\%, within 10 mins there is a 48% increase and in 15 mins there is a 22\% increase in the Recommended Option compared to the Do-min.
Job Access	Proportion of population living within travel threshold ($15,30,45 \mathrm{mins}$) of jobs by PT	In the Recommended Option, the number of jobs that can be accessible within 15 mins by PT are 14,258 jobs (compared to 13,411 in the Do-min Option). In the Recommended Option, the number of jobs that can be accessible within 30 mins by PT are 30,085 jobs (compared to 20,289 in the Do-min Option). In the Recommended Option, the number of jobs that can be accessible within 45 mins by PT are 68,259 jobs (compared to 60,785 in the Do-min Option).	The proportion of employment accessible by PT increases in each of the time intervals assessed. Within 15 mins the percentage (points) of employment increases by 6%, within 30 mins there is a $\mathbf{4 8 \%}$ increase and in 45 mins there is a 12\% increase in the Recommended Option compared to the Domin.

Investment Objective 2: Reliability			
Network Performance	\% of vehicle kilometres travelled in peak congestion (>90\% v/c) in AM peak	9\% of vehicle-km travelled in congested conditions in the Domin scenario 5% of vehicle-km travelled in congested conditions in Recommended Option	There is an 4\% reduction (percentage points) of vehicle kilometres travelled in peak congestion (>90\% v / c) in the AM peak in the Recommended Option.
Susceptibility to Climate Change	Kilometres of infrastructure susceptible to Q100 flooding	19.1 km of the road network within Wainui achieves Q100 Flood level immunity. This helps support the overall sustainability and resilience goals of the North transport network.	Additionally, this KPI was measured on a per corridor basis: Pine Valley Road (2.8 km) Upper Orewa Extension (2.2 km) - Wainui Road (1.9 km) - Argent Lane (2.4 km) - Hibiscus- Coast Highway (9.8km)
Network Performance	Average PT journey time to Albany from Wainui during the AM peak	Average of 65 mins - for PT (Domin Option) Average of 64 mins - for PT (Recommended Option)	There is a slight reduction in the average travel time between the Recommended Option and Do-min option.
Investment Objective 3: Integration			
Active Mode Access	\% of Wainui with access to high-quality walking and cycling facilities (within 400 m of a dedicated, separated active mode facility)	In the Recommended Option, 1,476 hectares (71%) of Wainui is within 400 m of a dedicated, separated active mode facility. Compared to the Do-min Option which has 242 hectares (10\%).	There is $\mathbf{6 1 \%}$ increase (percentage points) in the proportion of Wainui within 400 m of a high-quality, dedicated active mode facility in the Recommended Option.
Perceived Safety	\% / KMs of new and improved cycle network achieving required QoS (from AT Statement of Intent 2018-21)	23.3 km of new cycle network.	Additionally, this KPI was measured on a per corridor basis (one-way along the corridor): - Pine Valley Road (2.6 km)

			- Upper Orewa Extension (2.2 km) - Wainui Road (1.9 km) - Argent Lane (2.4km) - Hibiscus- Coast Highway (9.8km) - Wainui Interchange active mode connection (0.2 km) SH1 walking and cycling path (4.0 km)
Amenity of the Street	KMs of new and improved transport network with enough space for street furniture/lighting and tree planting appropriate to the known place function and built form	19.1 km of new urban street scape space.	Additionally, this KPI was measured on a per corridor basis: - Pine Valley Road (2.8 km) - Upper Orewa Extension (2.2 km) - Wainui Road (1.9 km) - Argent Lane (2.4 km) - HibiscusCoast Highway (9.8km)
Investment Objective 4:Travel Choice			
Mode Share	\% PT and active (cycling and walking) mode share for local trips Daily - \% active mode share AM Peak - \%PT mode share	17% - for active modes (Recommended Option) 16\% - for active modes (Do-min Option) 6\% - for PT (Recommended Option) 4\% - for PT (Do-min Option)	There is a $\mathbf{1 \%}$ increase (percentage points) in active modes trips in the Recommended option compared to the Do-min option. There is a $\mathbf{2 \%}$ increase (percentage points) in PT trips in the Recommended option compared to the Domin option.

Emissions	Absolute and per capita reduction in transport emissions as a result of the project as measured by the VEPM model				According to the VEPM model, there is a $\mathbf{4 0 0}$ tonne yearly reduction in CO_{2}-eq emissions for the North Recommended transport network in 2048+.
Mode Shift	Mode shift from single occupancy private vehicle AM Peak - \%Car mode share	76% - Do-min scenario 74\% in Recommended Option			There is $\mathbf{2 \%}$ mode shift (percentage points) from single occupancy private vehicles in the Recommended Option.
Investment Objective 5:Safety					
DSI	No. of active mode incidents resulting in serious injury and deaths	0 active mode DSIs in the last 5 While the number of year period (2018-2022). previous active mode However, with the expected DSIs are relatively low. growth in the area exposure to The conflict risk for risks for active mode users is these users will expected to increase. To increase in the future accommodate for this increased as there are more safety risk, safe and connected vehicles and active walking and cycling facilities will mode users on the be provided on the majority of network. This risk can corridors in Wainui. be significantly reduced by providing dedicated facilities separated from traffic.			
Perceived Safety	\% / KMs of new and improved cycle network achieving required QoS (from AT Statement of Intent 2018-21)	23.3 km of new cycle network.			Additionally, this KPI was measured on a per corridor basis (one-way along the corridor): - Pine Valley Road (2.8 km) - Upper Orewa Extension (2.2 km) - Wainui Road (1.9 km) - Argent Lane (2.4km) - HibiscusCoast Highway (9.8km) - Wainui Interchange active mode

			connection $(0.2 \mathrm{~km})$
			SH1 walking and cycling path (4.0 km)

3.5.2 Dairy Flat Investment Objectives and Associated KPIs and Measures

The following table provides a summary of the transport outcomes related to the Northern growth area of Dairy Flat.

Key Performance Indicator	Measure	Outcome	Commentary
Investment Objective 1: Access			
Job Access	Proportion of population living within travel threshold ($5,10,15$ mins) of jobs by active modes	In the Recommended Option, the number of jobs that can be accessible within 5 mins by active modes are 4,623 jobs (compared to 3,249 in the Do-min Option). In the Recommended Option, the number of jobs that can be accessible within 10 mins by active modes are 14,006 jobs (compared to 6,971 in the Do-min Option). In the Recommended Option, the number of jobs that can be accessible within 15 mins by active modes are 28,347 jobs (compared to 21,455 in the Do-min Option).	The proportion of employment accessible by active modes increases in each of the time intervals assessed. Within 5 mins the percentage (points) of employment increases by 42\%, within 10 mins there is more than an 100\% increase and in 15 mins there is a $\mathbf{3 2 \%}$ increase in the Recommended Option compared to the Do-min.
Job Access	Proportion of population living within travel threshold ($15,30,45 \mathrm{mins}$) of jobs by PT	In the Recommended Option, the number of jobs that can be accessible within 15 mins by PT are 4,861 jobs (compared to 4,506 in the Do-min Option). In the Recommended Option, the number of jobs that can be accessible within 30 mins by PT are 58,886 jobs (compared to 7,448 in the Do-min Option). In the Recommended Option, the number of jobs that can be accessible within 45 mins by PT are 301,750 jobs (compared to 22,460 in the Do-min Option).	The proportion of employment accessible by PT increases in each of the time intervals assessed. Within 15 mins the percentage (points) of employment increases by 8%, within 30 mins and 45 mins there is more than a 100% increase in the Recommended Option compared to the Do-min.
Investment Objective 2: Reliability			
Network Performance	\% of vehicle kilometres travelled in peak congestion ($>90 \% \mathrm{v} / \mathrm{c}$) in AM peak	25% of vehicle-km travelled in congested conditions in the Do-min scenario 12% of vehicle-km travelled in congested conditions in Recommended Option	There is an 13% reduction (percentage points) of vehicle kilometres travelled in peak congestion (>90\% v / c) in the AM peak in the Recommended Option.

Susceptibility to Climate Change	Kilometres of infrastructure susceptible to Q100 flooding	17 km of the road network within Dairy Flat achieves Q100 Flood level immunity. This helps support the overall sustainability and resilience goals of the North transport network.	Additionally, this KPI was measured on a per corridor basis (one-way along the corridor): - Bawden Road (3.3km) - Dairy Stream Motorway Crossing (1.7 km) - Dairy Flat Highway (9.5 km) - East Coast Road (2.5 km)
Network Performance	Average PT journey time to Albany from Dairy Flat during the AM peak	Average of 81 mins - for PT (Do-min Option) Average of 46 mins - for PT (Recommended Option)	The average travel time from Dairy Flat reduces by 35 mins in the Recommended Option. This is a 43% reduction (percentage points) in the average travel time.
Investment Objective 3: Integration			
Active Mode Access	\% of Dairy Flat with access to high-quality walking and cycling facilities (within 400 m of a dedicated, separated active mode facility)	In the Recommended Option, 1,355 hectares (59\%) of Dairy Flat is within 400 m of a dedicated, separated active mode facility. Compared to the Do-min Option which has 205 hectares (9\%).	There is $\mathbf{5 0 \%}$ increase (percentage points) in the proportion of Dairy Flat within 400 m of a high-quality, dedicated active mode facility in the Recommended Option.
Perceived Safety	\% / KMs of new and improved cycle network achieving required QoS (from AT Statement of Intent 2018-21)	30.4 km of new cycle network.	Additionally, this KPI was measured on a per corridor basis (one-way along the corridor): - Bawden Road (3.3km) - Dairy Stream Motorway Crossing (1.7 km) - Dairy Flat Highway (9.5 km) - East Coast Road (2.5 km) - Dairy Stream active mode connection (3.0km) - RTN walking and cycling path (4.0 km)

					- SH1 walking and cycling path (9.4 km)
Amenity of the Street	KMs of new and improved transport network with enough space for street furniture/lighting and tree planting appropriate to the known place function and built form	17 km of new urban street scape space.			Additionally, this KPI was measured on a per corridor basis (one-way along the corridor): - Bawden Road (3.3km) - Dairy Stream Motorway Crossing (1.7 km) - Dairy Flat Highway (9.5 km) East Coast Road (2.5 km)
Investment Objective 4:Travel Choice					
Mode Share	\% PT and active (cycling and walking) mode share for local trips Daily - \% active mode share AM Peak-\%PT mode share	29\% - for active modes (Recommended Option) 17\% - for active modes (Do-mîn Option) 6\% - for PT (Recommended Option) 3% - for PT (Do-min Option)			There is an 12% increase (percentage points) in active modes trips in the Recommended option compared to the Do-min option. There is a $\mathbf{3 \%}$ increase (percentage points) in PT trips in the Recommended option compared to the Domin option.
PT Attractiveness	KMs of Dedicated Bus Lanes	8.9 km of dedicated bus lanes.			Additionally, this KPI was measured on a per corridor basis (one-way along the corridor): - Bawden Road (3.3 km) - Dairy Flat Highway (5.6km)
Emissions	Absolute and per capita reduction in transport emissions as a result of the project as measured by the VEPM model				According to the VEPM model, there is a $\mathbf{2 , 1 0 0}$ tonne yearly increase in CO_{2}-eq emissions for the North Recommended transport network in 2048+.
		CO2-eq /t	1,863,100	1,865,200	
Mode Shift	Mode shift from single	78\% - Do-min scenario			There is $\mathbf{1 5 \%}$ mode shift (percentage points) from

	occupancy private vehicle AM Peak \%Car mode share	63\% in Recommended Option	single occupancy private vehicles in the Recommended Option.
Investment Objective 5:Safety			
DSI	No. of active mode incidents resulting in serious injury and deaths	2 Active mode DSIs in the last 5 year period (2018-2022). However, with the expected growth in the area exposure to risks for active mode users is expected to increase. To accommodate for this increased safety risk, safe and connected walking and cycling facilities will be provided on the majority of corridors in Dairy Flat.	While the number of previous active mode DSIs are relatively low. The conflict risk for these users will increase in the future as there are more vehicles and active mode users on the network. This risk can be significantly reduced by providing dedicated facilities separated from traffic.
Perceived Safety	\% / KMs of new and improved cycle network achieving required QoS (from AT Statement of Intent 2018-21)	30.4 km of new cycle network.	Additionally, this KPI was measured on a per corridor basis (one-way along the corridor): - Bawden Road (3.3km) - Dairy Stream Motorway Crossing (1.7 km) - Dairy Flat Highway (9.5 km) - East Coast Road (2.5 km) - Dairy Stream active mode connection (3.0km) - RTN walking and cycling path (4.0 km) - SH1 walking and cycling path (9.4 km)

3.5.3 Silverdale West/Pine Valley Investment Objectives and Associated KPls and Measures

The following table provides a summary of the transport outcomes related to the Northern growth area of Silverdale West/Pine Valley.

Key Performance Indicator	Measure	Outcome	Commentary
Investment Objective 1: Access			
Job Access	Proportion of population living within travel threshold ($5,10,15$ mins) of jobs by active modes	In the Recommended Option, the number of jobs that can be accessible within 5 mins by active modes are 14,573 jobs (compared to 9,668 in the Do-min Option). In the Recommended Option, the number of jobs that can be accessible within 10 mins by active modes are 21,121 jobs (compared to 16,537 in the Do-min Option). In the Recommended Option, the number of jobs that can be accessible within 15 mins by active modes are 30,359 jobs (compared to 29,484 in the Do-min Option).	The proportion of employment accessible by active modes increases in each of the time intervals assessed. Within 5 mins the percentage (points) of employment increases by $\mathbf{5 1 \%}$, within 10 mins there is a 28% increase and in 15 mins there is a $\mathbf{3 \%}$ increase in the Recommended Option compared to the Do-min.
Job Access	Proportion of population living within travel threshold (15,30,45mins) of jobs by PT	In the Recommended Option, the number of jobs that can be accessible within 15 mins by PT are 15,689 jobs (compared to 10,847 in the Do-min Option). In the Recommended Option, the number of jobs that can be accessible within 30 mins by PT are 27,692 jobs (compared to 18,709 in the Do-min Option). In the Recommended Option, the number of jobs that can be accessible within 45 mins by PT are 142,987 jobs (compared to 29,620 in the Do-min Option).	The proportion of employment accessible by PT increases in each of the time intervals assessed. Within 15 mins the percentage (points) of employment increases by 44%, within 30 mins there is a 48% increase and in 45 mins there is more than a 100\% increase in the Recommended Option compared to the Do-min.
Investment Objective 2: Reliability			
Network Performance	\% of vehicle kilometres travelled in peak congestion ($>90 \% \mathrm{v} / \mathrm{c}$) in AM peak	47\% of vehicle-km travelled in congested conditions in the Do-min scenario 15% of vehicle-km travelled in congested conditions in Recommended Option	There is an 32\% reduction (percentage points) of vehicle kilometres travelled in peak congestion (>90\% v / c) in the AM peak in the Recommended Option.

Susceptibility to Climate Change	Kilometres of infrastructure susceptible to Q100 flooding	10.7 km of the road network within Silverdale West/Pine Valley achieves Q100 Flood level immunity. This helps support the overall sustainability and resilience goals of the North transport network.	Additionally, this KPI was measured on a per corridor basis (one-way along the corridor): - Dairy Flat Highway (4.8 km) - East Coast Road (3.2 km) - New connection between Dairy Flat Highway and Wilks Road (2.0 km) Wilks Road (0.7km)
Network Performance	Average PT journey time to Albany from Silverdale West/Pine Valley during the AM peak	Average of 70 mins - for PT (Do-min Option) Average of 56 mins - for PT (Recommended Option)	The average travel time from Silverdale West/Pine Valley reduces by 14 mins in the Recommended Option. This is a $\mathbf{2 0 \%}$ reduction (percentage points) in the average travel time.
Investment Objective 3: Integration			
Active Mode Access	\% of Silverdale West/Pine Valley with access to highquality walking and cycling facilities (within 400 m of a dedicated, separated active mode facility)	In the Recommended Option, 905 hectares (83%) of Silverdale West/Pine Valley is within 400 m of a dedicated, separated active mode facility. Compared to the Do-min Option which has 0 hectares (0%).	There is $\mathbf{8 3 \%}$ increase (percentage points) in the proportion of Silverdale West/Pine Valley within 400 m of a high-quality, dedicated active mode facility in the Recommended Option.
Perceived Safety	\% / KMs of new and improved cycle network achieving required QoS (from AT Statement of Intent 2018-21)	17.3 km of new cycle network.	Additionally, this KPI was measured on a per corridor basis (one-way along the corridor): - Dairy Flat Highway (4.8 km) - East Coast Road (3.2 km) - New connection between Dairy Flat Highway

			and Wilks Road $(2.0 \mathrm{~km})$ - Wilks Road (0.7km) - RTN walking and cycling path (3.0km) - SH1 walking and cycling path (3.6 km)
Amenity of the Street	KMs of new and improved transport network with enough space for street furniture/lighting and tree planting appropriate to the known place function and built form	10.7 km of new urban street scape space.	Additionally, this KPI was measured on a per corridor basis (one-way along the corridor): Dairy Flat Highway (4.8 km) - East Coast Road (3.2 km) - New connection between Dairy Flat Highway and Wilks Road (2.0 km) - Wilks Road (0.7km)
Investment Objective 4:Travel Choic			
Mode Share	\% PT and active (cycling and walking) mode share for local trips Daily - \% active mode share AM Peak \%PT mode share	10\% - for active modes (Recommended Option) 8\% - for active modes (Do-min Option) 5\% - for PT (Recommended Option) 2\% - for PT (Do-min Option)	There is a $\mathbf{2 \%}$ increase (percentage points) in active modes trips in the Recommended option compared to the Do-min option. There is a 3\% increase (percentage points) in PT trips in the Recommended option compared to the Do-min option.
PT Attractiveness	KMs of Dedicated Bus Lanes	1.1 km of dedicated bus lanes.	Additionally, this KPI was measured on a per corridor basis (one-way along the corridor): - New connection between Dairy Flat Highway and Wilks Road (1.1km)

			RTN walking and cycling path (3.0km)
			SH1 walking and cycling path (3.6 $\mathrm{km})$

4 Transport Analysis

The following transport analysis sets out the transport network planning undertaken to determine the recommended corridors and intersections.

4.1 Land Use Scenarios

This summary provides an overview of the land use scenarios and assumptions used to assess the transport network.

4.1.1 Land Use Assumptions

Land use data was the main input used to inform the expected growth in transport demand, which then informed the network planning. For network planning purposes, a 2048+ (full build-out of planned development) land use scenario was used to develop the recommended network, which reflects the needs for long-term transport infrastructure.

It is acknowledged that land use forecasts have inherent uncertainty, particularly in terms of the specific rate of new growth in specific areas. Currently, there is additional uncertainty around the likely outcomes and rate and location of higher-density development sought through central Government policies such as the National Policy Statement on Urban Development (NPS-UD) and Auckland Council's Plan Change 78.

A key intent of those policies is to enable higher density development, especially around high-quality public transport systems. The specific planning response to those policies is currently being progressed by Auckland Council, and revised land use forecasts reflecting any expected changes were not available at the time of preparing this assessment. Generally, it is considered that this Project is not inconsistent with such policy direction, regarding supporting higher density urban development via more sustainable travel modes. Given this context, the use of a full build out scenario forecasts is considered acceptable for this assessment

4.1.1.1 Land Use Inputs \& Scenarios

The development of the land use scenarios includes inputs from future land use plans, forecasts, and policies, which includes

- Unitary Plan Zoning
- Precinct Plans
- Council Structure Plans, such as the Silverdale West industrial area
- Outcomes identified in the Auckland Plan 2050, including for Homes and Places; Transport and Access; and Opportunity and Prosperity
- Master Planning by landowners through Private Plan Changes

A summary of planned growth and timing for each growth area in the North is set out below.

Figure 4-1: FULSS for North

4.1.1.2 Assessment Kears

The development of the land use scenarios includes different analytical years to inform staging, economic assessments, and the development of the recommended network. The different assessment years and their intended use are summarised below in Table 4-1.

Table 4-1: Summary of Land Use Assessment Years

Assessment Year	Network Planning and Staging	Economic Assessments	Recommended footprint
2016*	$\sqrt{ }$		
2028, 2038 \& 2048 (interim years)	$\sqrt{ } \sqrt{ } \sqrt{ }$	$\sqrt{ } \sqrt{ }$	$\sqrt{ }$
$\mathbf{2 0 4 8 +}$ (full build-out)	$\sqrt{ } \sqrt{ } \sqrt{ }$	$\sqrt{ } \sqrt{ }$	$\sqrt{ } \sqrt{ }$

relative significance low $(\sqrt{ })$, relative significance high $(\sqrt{ } \sqrt{ })$ and base year reference ${ }^{*}$)
The I-11 land use forecast series was agreed by Waka Kotahi, AT and AC as the most appropriate land use scenarios to use. This also includes the interpretation of the Future Urban Land Supply Strategy (FULSS). The inputs include Stats NZ Medium growth population forecasts and detailed demographic trends, via 64 person categories, 8 household categories, 6 employment types and 3 educational role categories.

Based on the I-11 land use forecast series, the Auckland Forecasting Centre (AFC ${ }^{3}$) created each forecast scenario used by Te Tupu Ngātahi for the interim and full build-out scenarios.

AFC created the forecasts for the North IBC and North DBC. These include the 2046+ (used in the IBC) and 2048+ (used in the DBC) datasets that include the full build-out in growth areas. Refer to Technical - North DBC Modelling Specifications for further details about the difference between IBC and DBC land use scenarios.

4.2 Transport Network Analysis

The following section describes the transport analysis undertaken to reach the recommended network for the North DBC. This includes the network, corridor and intersection assessments undertaken, including:

- AT's Roads and Streets Framework (RASF)
- The Corridor Form Assessment Framework (CFAF)
- Cross-Section Design
- Intersection Form and Function.
- Intersection Design

4.2.1 Transport Modelling

Throughout the transport network analysis process, a range of different transport modelling tools have been used to undertake quantitative assessments of the transport system. These then inform decisions about planning transport network, corridors, and intersections.

The modelling methodology undertaken for the North DBC options follows a typical hierarchical modelling structure and utilises a range of models as detailed below.

Strategic multi-modal model

- MSM is a regional multi-modal model for Auckland, which translates land use (such as population and employment) to travel patterns (which creates estimates of car, truck and public transport movements) at a strategic and region-wide level.
- MPT is the Regional Public Transport Model linked with MSM to provide public transport forecasts.
- The MSM model provides the demand response for the projects

EMME Traffic model

- This uses the traffic demands from MSM on a more detailed representation of the road network, and much disintegrated zone system

[^1]- The traffic model in Emme is developed from the MSM network by adding more details to the network from traffic perspective

Active Modes model

- The AFC Strategic Active Modes Model (SAMM) provides strategic-level estimates of walking and cycling demands.
- Te Tupu Ngātahi active modes station access model, this tool is only used to provide estimates of walking and cycling to major stations.

Intersection modelling

- SIDRA modelling has been undertaken to assess the operational performance of key intersections along the project corridors. The demand was informed by the SATURN models.

The North DBC Modelling Specifications provides more model specifications and details for each respective model package used.

4.2.2 Roads and Streets Framework (RASF)

The development of the corridor design has included the use of AT's Roads and Streets Framework (RASF), which qualitatively assesses the typology (movement and place value) and modal priority.

The intent of that framework is to classify the expected movement and place functions from a consistent regional context and identify the likely priority applied to each mode.

Each corridor within the North DBC was assessed based on the following:

- Place function - for existing and long term 2048+
- Movement function - for existing and long term 2048+
- Modal priority - that reflect a $2048+$ environment.

The framework itself does not directly dictate a specific corridor design but provides context and guidance regarding the intended function of the corridor. This in turn will be used to inform future development and operation of the corridor. A 'mandate' for each road corridor has been developed by Te Tupu Ngātahi and approved by the RASF Steering Group, comprising senior officers from Auckland Transport and Auckland Council.

RASF mandates were completed for corridors that fall under the jurisdiction of Auckland Transport.
Since the release of the RASF, Waka Kotahi NZ Transport Agency (Waka Kotahi) has released a similar framework called the One Network Framework. The One Network Framework (ONF) can be used to identify the place and movement functions of roads and streets throughout the New Zealand network for both rural and urban environments. The ONF has more tiers when scoring the respective place and movement functions of a corridor. The framework has five tiers for place and movement, while the RASF has three.

4.2.3 Corridor Form Assessment Framework

The Corridor Form Assessment Framework (CFAF) has been designed by Te Tupu Ngātahi to provide a consistent methodology to define the desired corridor form and function requirements and ensure all
modes are considered. The CFAF assessments were completed for all multi-modal corridors within the North recommended network.

The CFAF output recommends traffic capacity, bus priority measures, walking and cycling facilities and other corridor elements which influence the corridor footprint. All modes are considered in the development of the cross-section, however facilities for all modes may not necessarily be provided. The resulting cross-section forms the basis for route protection for the corridor.

The form and function of a corridor is determined using a combination of 'place' and 'movement' significance on the individual setting:

- Place factors consider the existing land use, future land use plans and trip generators present in the catchment area. It also includes an assessment of the future density of residential, industrial or mixed land use and local/regional trip attraction areas e.g. metro stations, schools, hospitals.
- Movement factors consider the hierarchy of the corridor in the regional road network (PT network, strategic freight network), modal priorities for the corridor and existing and future traffic volumes to determine the future typology and recommendations for a corridor function. Movement is considered at both local and network levels to ensure that duplication of facilities is avoided and the corridors have targeted modal functions.

Table 4-2 provides a summary of the inputs and outputs of the CFAF tool used during the assessment.

Table 4-2: Inputs and Outputs of the CFAF tool

Inputs	Modelling inputs required	Parameters	Outputs	Impact on modelling
Place and corridor function	No	Qualitativê assesŝment based on the Roads and Streets Framework (RASF)	Determines the purpose of the route and feeds into wider modal priority assessment	N/A
Public transport	No	AT Remix File ${ }^{4}$	Public transport priority	No
Walking and cycling		Te Tupu Ngātahi primary and secondary walking and cycling network used, based on urban design framework	Helps with geometric design, determining suitable paths and which sides to include the facility	Chosen facility type for different corridors coded into SAMM
General traffic	Yes	ADT volumes used, extracted from EMME.	If PT priority needed, helps determine whether corridor is route protected for 2 or 4 lanes'	Number of lanes included in MSM, used for EMME outputs

[^2]| Freight | Yes | User Class 3 (heavy
 vehicles) divided by total of
 all user classes (all vehicles)
 to determine the percentage
 of freight. Data extracted
 from EMMME. | Informs role within
 wider freight
 network and
 whether specific
 freight measures
 are needed along
 corridor' | Yes |
| :--- | :--- | :--- | :--- | :--- |
| Speed
 Environment | No | Assumption based on RASF
 and future land use.
 Parameters for high and low
 speed based on the IBC
 design philosophy | High level
 assessment
 concludes a low
 speed of 50/60km/h
 or a high speed of
 $80 k m / h$. These are
 the base
 assumptions for the
 speed, subject to | EMME outputs |

4.2.4 Type A Business Case and Constraine Gorridors/Segments

The output from the CFAF process indicates the necessary width required to provide a Te Tupu Ngātahi cross section and subsequently meet the outcomes sought by the Alliance. However, due to physical and environmental constraints, not all of the corridors on the North recommended network can accommodate the identified CFAF cross-section

These corridors include:

- Hibiscus Coast Highway/Grand Drive - Type A Business Case
- East Coast Road - Updated Te Tupu Ngātahi cross section
- Dairy Flat Highway - Albany to Dairy Flat - Updated Te Tupu Ngātahi cross section

For Hibiscus Coast Highway/Grand Drive it was found that there was sufficient width in the carriageway to allow for a reallocation of space to achieve the desired outcomes sought by Te Tupu Ngātahi. However, due to the complex interactions with property access and need to consider compromised design standards, this can be considered as part of a single stage business case with a more detailed level of design.

For East Coast Road and Dairy Flat corridors, the rural sections have significant geometric constraints therefore a constrained cross section was considered for both these projects. It should be noted that NoRs are still proposed for these two corridors.

The Jackson Way corridor was considered through the CFAF process, however the expected traffic volumes along the corridor results in the corridor performing a collector function within the network. Hence, the corridor was removed from scope with the expectation that it will be delivered through private developers in conjunction with Auckland Transport.

4.2.4.1 North Local Transport Corridors

The following table provides a summary of the RASF mandates and CFAF results for the North local transport corridors. The future typology (movement and place value) and future modal priority for each corridor is summarised below, along with the proposed future cross-section from the CFAF process. A fuller description of the CFAF summary can be found in Appendix 1.

Wainui Road - Argent Lane to the Wainui Road
Bridge

Future Typology: P2/M3

Place Assessment: The supporting rationale is that the corridor sits within the FUZ and adjacent to the Milldale development.

Movement Assessment: The rationale for the M3 assessment is that with the expected urban growth adjacent to the corridor there will be an increased throughput for all modes. Particularly, in regard to the location of the corridor adjacent to the motorway. This will increase the demand along the corridor for strategic trips from adjacent growth areas.

Future Modal Priority
${ }_{7}$

$$
\begin{aligned}
& 6 \\
& 5
\end{aligned}
$$

CFAF Cross-section
AF cross-scction

Indicative $\mathbf{2 4 m}$ cross section

Dairy Flat Highway (2) - Wilks Road to Richards Road
Future Typology: P1/M3

New Link Road connecting Kahikatea Road to Postman Road Future Typology: P2/M3
Place Assessment: The supporting rationale is that the corridor sits within the heart of the Silverdale - West Dairy Flat Industrial Area and includes land uses such as light and heavy industry.
Movement Assessment: The rationale for the M3 assessment is that the corridor forms an east-west connection through the centre of the Silverdale West - Dairy Flat Industrial Area.
Hence, the link has a high strategic significance for freight and general traffic.
New Link Road connecting Postman Road to
Wilks Road

East Coast Road (1) - Hibiscus Coast Highway
to Newman Road Future Modal Priority
to Newman Road

Future Typology: P2/M3

Place Assessment: The place function has been assessed as P2. The land use within this segment of East Coast Road is not expected to dramatically change over the next 30 years. There is uncertainty around the levels of intensification that is expected within the area.

Movement Assessment: The rationale for the M3 assessment is that with the expected urban growth adjacent to the corridor there will be an increased throughput for all modes. East Coast Road will remain an important north-south connection between Silverdale and Albany. In addition, the corridor provides an alternative connection between these areas without the need to travel via SH1.

Grand Drive to Wainui Road-Hall Farm
development Town Centre to Wainui Road

Future Typology: P2/M2

Place Assessment: The supporting rationale is that the corridor sits within the FUZ. It should be noted that a large residential development is proposed at the northern end of the corridor.

Movement Assessment: The rationale for the M2 assessment is that with the expected urban growth (sub-regional attractors) adjacent to the corridor there will be an increased throughput for all modes. The adjacent growth will increase the demand for both local trips within Milldale and strategic trips from adjacent growth areas.

Future Modal Priority

CFAF Cross-section
n

Indicative $\mathbf{2 4 m}$ cross section

4.2.5 Intersection Form and Function

A process was undertaken to identify likely future intersection form and function for the emerging Recommended Options. The purpose of this process was to identify the indicative intersection controls and subsequent footprint implications. It is noted that the final decision of the form and control of the intersections, could be modified when further land use certainties were known at time of implementation.

For the purposes of the intersection assessment the following factors were considered:

- Safety.
- Transport network function (movement) and land use function (place).
- Form and Level of Service (LOS)/ Quality of service required for different modes.
- Land use integration.
- Site specific constraints.
- Design constraints.
- Roundabout vs signals guidance.
- Network staging and route protecting.
- Future land used assumptions.
- Future transport network assumptions.

For each intersection control chosen, design features were also considered to ensure that the intersection meets the needs of different users safely and effectively and responds to the site-specific factors. The guidance adopts a 'Safe System' approach and recommends roundabouts as the first choice for at-grade intersections due to the safety benefits for vehicular traffic resulting from slowing down through traffic and reducing the number of conflict points. However, where roundabouts are not considered appropriate for example due to engineering constraints or land use implications, signalised intersections were then considered.

Currently, there are approximately 52 intersections within the extents of the North DBC corridors. The intersection assessments have been consolidated to consider the key intersections - specifically Arterial to Arterial or Arterial to Collector roads. Intersections with a local road are generally prioritycontrolled intersections and are assumed to remain priority-controlled intersections in the future.

SIDRA modelling was undertaken to inform the intersection size requirements. It should be noted that in some cases modelling constraints resulted in limited turning volumes. In these cases, high level assumptions on likely turning movements were utilised.

Appendix 2 offers a summary or the proposed intersection forms and the associated modelling results for 2048+ for the relevant intersections that have been tested.
4.2.5.1 North Intersections

Appendix 1: North Form \& Function

Form \& Function for North Local Corridors

Table A1.1: Form \& Function for Local North Transport Corridors

	Freight: Not considered to have a key strategic freight role
	Vehicle Lanes Total (Priority Lanes/ PT Priority at intersections): 4 (None/None)
unconstrained sections)	Active Modes: Separated cycle lanes and footpaths on one side
	Speed Environment: 60kph
	Parking and Access: Property access; no parking
New Link Road - Kahikatea Flat Road to Postman Road (1)	CFAF Summary
 Indicative 24 m cross section	Purpose of Corridor: The corridor provides an east-west connection through the centre of the Silverdale West - Dairy Flat Industrial Area. Additionally, the corridor forms an important link between the Industrial Area and SH1. General Vehicle Volume: ADT 16,000 in 2048 Priority Vehicle: 6 buses per hour under indicative 2048 AT bus network Freight: Recommended that this corridor be considered by AT as part of freight network as the corridor provides access to SH1 from Silverdale West-Dairy Flat Industrial area.
	Vehicle Lanes Total (Priority Lanes/ PT Priority at intersections): 4 (None/None)
	Active Modes: Separated cycle lanes and footpaths on both sides
	Speed Environment: 50kph
	Parking and Access: Property access; no parking

New Link Road - Postman Road to Wilks Road (2) CFAF Summary

Indicative 30m cross section
Purpose of Corridor: The corridor provides an east-west connection through the centre of the Silverdale West - Dairy Flat Industrial Area. Additionally, the corridor forms an important link between the Industrial Area and SH1.

General Vehicle Volume: ADT 30,400 in 2048

Priority Vehicle: 0 buses per hour under indicative 2048 AT bus network

Freight: Recommended that this corridor be considered by AT as part of freight network as the corridor provides access to SH1 from Silverdale West-Dairy Flat Industrial area.

Vehicle Lanes Total (Priority Lanes/ PT Priority at intersections): 4 (None/None) (Potential freight lanes)

Active Modes: Separated cycle lanes and footpaths on both sides

Speed Environment: 50kph
Parking and Access: Property access; no parking

| East Coast Road (1) - Hibiscus Coast Highway to Newman |
| :--- | :--- | :--- |
| Road | | CFAF Summary |
| :--- |

| Upper Orewa Extension -Hall Development Town Centre
 to Wainui Road | CFAF Summary
 Purpose of Corridor: The corridor
 provides a north-south connection for all
 modes from the growth area of Milldale to
 Grand Drive and Orewa. |
| :--- | :--- | :--- |

Argent Lane	Parking and Access: Property access; no parking			
CFAF Summary		$	$	Purpose of Corridor: The corridor cuts
:---				
through the centre of the Milldale				
development and links Pine Valley Road				
and Wainui Road.				

TE TUPU NGĀTAHI
 SUPPORTING GROWTH

Appendix 2: Intersection Performance Summary

Intersection Operational Performance

Table A2.1: Intersection SIDRA Results

Intersection Summary									
Area	Intersection	Proposed Form	AM			PM			Commentary
			Los	DOS	Delay (s)	Los	DOS	Delay (s)	
North	Wainui Road Argent Lane	Roundabout	B	0.727	12	B	0.849	16	Acceptable
	Wainui Road Upper Orewa Extension	Roundabout	A	0.476	7	A	0.579	8	Acceptable
	Bawden Road Dairy Flat Highway	Dual-lane Roundabout	A	0.682	9	C		27	Acceptable
	East Coast Road Hibiscus Coast Highway	Signalised Intersection	C	0.834	26.4		0.925	54	Acceptable
	East Coast Road Forge Road	Signalised Intersection	D			D	0.916	53	Acceptable
	East Coast Road - Spur Road	Roundabout		0.42	5	A	0.661	6	Acceptable
	East Coast Road Wilks Road	Dual-lane Roundabout		0.323	7	A	0.599	9	Acceptable
	East Coast Road Penlink	Roundabout	A	0.722	9	A	0.637	8	Acceptable
	Pine Valley Road Argent Lane	Dual-Lane Roundabout	A	0.875	10	A	0.717	9	Acceptable
	New Link Arterial (Industrial Arterial_ Dairy Flat Highway	Signalised Intersection	D	0.795	38	D	0.922	45	Acceptable
	New Link Arterial (Industrial Arterial_ Postman Road	Dual-Lane Roundabout	A	0.537	9	B	0.624	11	Acceptable
	Dairy Flat Highway - Pine Valley	Signalised Intersection	D	0.714	37	D	0.924	52	Acceptable
	Dairy Flat Highway - Wilks Road	Dual-Lane Roundabout	A	0.409	6	A	0.705	8	Acceptable
	Dairy Flat Highway - Horseshoe Bush Road	Signalised Intersection	B	0.506	19	B	0.708	20	Acceptable

Intersection Summary									
	Dairy Flat Highway - Blackbridge Road/Postman Road	Dual-Lane Roundabout	A	0.405	7	A	0.380	7	Acceptable
	Dairy Flat Highway - Green Road	Dual-Lane Roundabout	A	0.637	7	A	0.530	8	Acceptable
	Dairy Flat Highway - Kennedy Road	Dual-Lane Roundabout	A	0.853	5	A	0.743	7	Acceptable
	Dairy Flat Highway - Durey Road	Roundabout	A	0.848	6	B	0.797	12	Acceptable
	Dairy Flat Highway - Potter Road	Roundabout	A	0.251	7	A	0.251		Acceptable
	Dairy Flat Highway - Coatesville- Riverhead Highway	Dual-Lane Roundabout	B	0.950	13	B	13		Acceptable
	Dairy Flat Highway - Albany Heights Road	Roundabout	A	0.679			0.786	6	Acceptable
	Dairy Flat Highway - Hobson Road	Roundabout	A			A	0.664	8	Acceptable

[^0]: ${ }^{1}$ SGA Approach to Do Minimum Development_V1
 ${ }^{2}$ Modelled land use scenario is I11v. 6

[^1]: ${ }^{3}$ AFC $=$ Auckland Forecasting Centre, which is a collaboration between Auckland Council, Auckland Transport and the NZ Transport Agency

[^2]: ${ }^{4}$ Te Tupu Ngātahi Remix File refers to the Auckland Transport vision of the $2048+$ bus network. Data and routes are subject to change.

